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CONTROL OF TORSIONAL VIBRATIONS BY FENDULUM MASSESa’

By Albert Stieglitz’

Various versions of pendulum masses have been devel- ‘
oped abroad within the past few years by means of which
resonant vibrations of rotating shafts can tie eliminated
at a given tuning. They are already successfully ern~loyed
on radial engines in the form of ~endulous counterweights.
Compared with the commonly known ~orsional vibration damp-
ers, the pendulum masses have the advanta~;e of leing
structurally very simple, requiring no internal damping
and being capable of completely eliminating certain
vibrations.

Unexplained, so far~ remains the problem of behavior
of pendulum masses in other critic?.1 zones to which they
are not tuned, their dynamic behnrior at some tuning other
than in resonance, and their effect within ?. compound
vibration system and at simultaneous application of sev-
eral differently tuned pendulous masses. .

These problems are analyzed in the present report.
The results constitute an enlargement of the scope of a~-
plication of pendulum masses, especially for in-line
engines. Among other things it is found that the n?tural
frequency of a system can be raised by means of a corre-
spondingly tuned pendulu~ mass. The formulas necessary
for the design of any practical version are developed,
and a pendulum mass having two different natural frequ-en-
cies simultaneously is described.

i Ii INTRODUCTION

:\

1-
i\) The present investigation deals with the torsional

vibrations of rotating shafts under the effect of pendulum&\

1,

masses,; which have been added for the pu,rpo.s.~of .eliminat-
.!, ing ‘the dangers of resonant vibrations. The pendulously
~’ linked masses are subjected to the centrifugal forces of

;i
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the rotary motion which exert restoring forces on the
vibratory motion of the pendulum masses.

Both T.aylorls (reference 1) and Salomonls (reference
2) system of pendulum masses are based on the resonance
principle in the same manner as the conventional resonance
dampers. But, while in the latte~ the mass is coupled by
springs or gravity with the system and so attains a cer-
tain constant natuxal frequency, the natural frequency of
the pendulum mass restored by the centrifugal forces var-
ies with the rotative speedj hence changes its dynamic
behavior fundamentally.

Resonant dampers with constant natural frequency
remove the vibrations in one critical speed, but permit
the creation of a new critical zone above and below this
speed, the damping of which requires an internal damping.
Resonant dampers have been known for a long time. As
early as 1895, Pollak (reference 3, p. 911) employed a
flywheel disk fastened to a shaft by meane of rubber bush-
ings of a specific size for the purpose of reducing the
shaft vibrations, and %y so doing, un~oubtedly, applied
the resonance principle. In 1908 Schulerts resonance
principle (reference 3, p. 845) had becoi~e known and ac-
cepte’d. In Frakmfs antirolling tank of 1911 (reference 4)
a water mass coupled with the ship by the centrifugal force
is tuned to the same natural freauency as that of the sh-ip.
In the same-year (1911), Kutzbach (reference 5, pp. 451
and 703) developed the damper shown in figure 1 on which
a fluid mass in the U-shaped channel of a flywheel is re-
stored by centrifugal forces. This device itself repre-
sents a foreruni~er of the pendul,um masses of Taylor and
Salomon. However,the dynamic relations were not explored
in detail at that time, nor was the method further followed
up, probably because there were no demands for such dampers
then.

The pendulum mass is a means of eliminating dangerous
vibrations~ which, by virtue of its effectiveness and sim-
plicity surpasses any other known damping device, and
merits much greater attention. While, for instance, wi,th
one of t-he known dampers (resonant dampers friction d’amper)
the vibrations are, at best, reduced to the static deflec-
tioil corresponding to the exciting .f,orce, the vibrations
of a one-mass syst’em can be ,completely eliminated by one
or more pendulum masses. The shaft then revolves like a
rigid shaft without being alternatingly stressed, notwith-
standing the alternating forces acting on it. The pendulum

,
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masses are not subj~at to wear in operation nor t~ varia-
‘tiontin tuning in addition to being insusoeptibie.to’ dis-.

‘ plac~ments of the.natural frequencies of the system.

~ This principle has been utilized successfully in a
I1 device employed on the U.j S. Wright-Cyclone radial air-

/ craft engines. The already existing counterweight serves

\
as pendulum mass. A Hispafio-Suiza radial engine and”a
Peugeot automobile engine in prance are also said to have

\ been fitted with pe’ndulum masses. Eurther applicatio~s
of pendulum masses to other automobile engines or station-

; ary plants are not known. The reason for this lies in
i their comparative newness and insufficient knowledge of[
}’ their mode of operation. Apart from that, there i’sthe

1’ ma’tter of patents.

Taylor~s studies extend to the case of a two-mass
system with a simple pendulum mass. He deduced the nat-
ural frequency of the pendulum mass and the resultant tun-
ing at a certain mode of excitation. But his premise for
the general motion of the pendulous mass is wroilg. The
result for the general case is not discussed further.
Salomon used a flywheel equipped with pendulum rollers.
The geileral formula is developed only for the case of res-
onance of t-he pendulous roller. The natural frequencies
for several forms of pendulous masses and their deflections
in resonance are calculated. Both Taylor and Salomon treat
only the case of resonance of the pendulous lfiass,but fail
to touch upon the subject of how this mass really acts in
other critical zones.

Tn the followii~g an-attempt is made to explain, in a
very general fashion, -the phenomenon accompanying the rLlo-

tions of pendulum masses. The study is extended to include
any compound-mass system. Besides the resonant tuning of
the pendulum masses other cases of tuning are dealt with,
which, as will be seen, are often much more of practical
importance. The different types of pendulum masses are
analyzed and the necessary design data indicated.

. .
II. PROCESS OF INVESTIGATION

., . - .. . .
The investigation was carried on with very simple

equipment . Only small vibratory deflections Q are pre-
sumed, at which it is always possible to put sin w = CDS
Cos @ = 10 The error involved is practically insignificant



in most cases, when it is considered, for instance, that
the natural frequency of a gravity penduluin at deflections
up to +22° dive”rges only alout 1 percent from the value
for small deflections.

The system subjected to torsional vibrations, performs
a uniform rotary motion together with a superimposed vibrat-
ing mot’ion. When applying the centrifugal forces at the
individual pendulous masses, the rotary motion can for the
present be disregarded. The attendant Coriolis component
of acceleration due to the concomitant vibrating motion is
negligible, since it is small at small deflections compared
with the centrifugal forces of higher order. l’heil,if the
mass forces of the oscillating motion are applied to all
the masses the vibratory motion itself can be disregarded
aild the system is completely at rest. The task is thus
reduced to a static problem and merely involves bringing
all forces in the proper phase into equilibrium at the dif-
ferent points, so that all the dynamic relations can be
secured. This simplifies the study considerably and makes
for a clear representatioil of the processes. This method
has been previously employed by the author in his article
titled: !lTorsional Vibrations in In-Line Enginesll (refer-
ence 5), which also contaias a detailed description of
the method.

In conformity with the available data on pendulum
masses, the case of a system with one degree of freedom
a.ld a simple pendulum mass is treated first. The forced,
damped vibrations of this system are analyzed for differ-
ent tuning of pendulum mass and different modes of excita-
tion, and subsequently the general case of a pendulum mass
attached at some point of a compound-mass system. Practi-
cally every important case of pendulum mass is mathemati-
cally worked out. Lastly, a pendulum mass with two natural
frequeilcies comprising two different modes of torsional
vibrations simultaneously is discussed.

The excitation is assumed constant over the entire
rotative speed raage. If an excitation increasing with
the square of the rotative speed is to be used as %asis,
such as approximately occurs on an Otto-type of aircraft
engine, all the deflections obtained are merely changed
proportionally (W/We)2. This is secondary for the opera-
tion of the pendulum masses. The motion of the pendulum
mass is, in additionj assumed to be free from frictioil.



NACA Technical Memorandum l~o. 1035 5

III. ONE LINX VIBRATiON SYSTEM WITH OiVE PENDULUM MASS

It is to be noted beforehand, that the subject
treated in this chapter is also contained in the general
solution of the subsequent chapter; nevertheless, this
simple case is to bo treated by itself as Introduction
and continuation of the already existing research data.

Visualize a vibrating system (fig. 2) consisting of
a flywheel mass of moment of inertia “O a?id a -shaft with
spri-.hgdofis”tant C-, having a point-pendull~m mass “.,10:‘
with. ”lerigthof pendulum s, linked at distance r from
the axis of rotation. Then visualize the systcm built in
at A into an infinitely large flywheel and rotating with
it at an angular speed Q. The flywheel mass @ can be
replaced, as indicated in figure 3, by a mass m at dis-
tance (r-,-l-s) from the axis of rotation, whereby Q.
m(r + s)’:. Then the longitudinal vibrations of the masses
on the circumference of the circle with radius (r + s) can
be invest~gated for small” deflections instead of the tor-
sioilal‘vibrations.

Coilsidering, ilext, the ,mass i of the system as noQ-
vibratory and applying the centrifugal force F = mo(r+s)Q2
on the pendulum mass no , the mass m. is restored by the
force 3(c- $) after a vibratory deflection ~, according
to figure 3. An .ideiltical force is applied at m as ‘-
counterforc:e in opposite direction. (See a-ppendix .1.)
Then. ,.

where b-=*(r + d) is the longitudinal deflection of
mass MCI corresponding to the angular deflection $.
The res~oration of mo relative to m therefore takes
place with a spring stiffn,es,s.hCOQ2 which varies propor-
t~onal to tke square,af the rotative speed, whereby
co = m. Z. Then the original syst-em of figure 2 can be- ‘ 7

s
replaced by the simple nonrotating two-mass system of fig-.
ure 4, that differs froiria c~mnon two-mass system merely
by the spring stiffness COG increasing with the speed

. .
-.

8
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of rotation. By spring constant c or co (22 is meant
the stiffness, that is, the force required for the de-.—-.— --—
flection 1, not the sprin~ action which forms the recip--—----
rocal value of itg

The natural frequency Oeo of the pendulum mass in

comparison with the static mass of the system then 2s

8 co f)2
QJeo = ~ = : S22

according to which the natural frequency is proportional
to the rotative speed. The ratio Weo/~ i6 designated
with q and termed the tuning of the pendulum mass,
since it governs the behavior of the pendulum mass. Thus
the tuning of the pendulum mass is, in the present case

m (1)

Now the system of figure 4 is to perform forced
damped vibrations under the effect of a harmonic excita-
tion P sin tit acting on m, The amplitude of the mass
m is a, that of mass m. is aoY and the relative
deflection is b, The system has natural damping; the
damping force acting conversely to the speed on m is
put at ka, that is, independent of the frequency, as
most closely approached by a material damping. Then the
work of hysteresis is proportional to the square of the
material stress.

Applying all the forces, including the mass forces
in the correct phase, affords the force diagram of figure
5. The excitation P“ is to have the phase ~ relative
to the oscillating deflection a. The formation of this
diagram can be envisaged as the actual vibratory motion
being superposed ly an exactly identical vibratory motion
shifted by a difference of phase of 90° relative to the
former in respect to space and time. Herewith all vibra-
tory motions become simple circular motions with rotational
speed W, the forces assume constant values.

The equilibrium conditions of all forces yield the
three equations:
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~
m. a. (0 = c. Q2b

c a =-P cos p + CO-Q2 b + m aua

ka=psin~

7

(2)

which suffice for the determination of the three unknowns,
a, ao, and ~, whereby b = a. - a. With

P = w/Q mode of excitation (that is, = 1, 2, 3, 4, . . .
for two cycle)(= $, 1, 1+ . .. . for four
cycle)”

ast = P/c static deflection of the mass of the system

z = k/c damping, that is, the ratio of daupii~g force
to spring force

v = a/ast magnification

z?
‘e /=cm natural frequenc~ of the system. 0

the foregoing equation (cf. appendix 2) affords the follovr-

iilg solution in diulensioniess form.:

Tfi.emagnification is

v = –~- = –--–––-–--––––––-L-------------------- “

as’~::~gy~-i-<-:::~)~:-:~
l- Q--

or q

v
1=

‘“-‘::
—-—

()]
2 ~

1 - ~~i + Z2
L e,

where

We! 2

()

1—-- = ————— ..————.———————
‘e ,.

‘o “ ‘11+=– -——————-—-
1- (P/q)2

(3) ‘

, ,.

(4)

The relative deflections of the pendulum mass are
according to appendix 2:
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bz&--l- - “)
Putting m. = O, that is, omitting the pendulun mass,

leaves the conventional resonance curve of the common ene-
mass system

v =

with the resonance

that the effect of

---- —-—--— -- —---—--+(;:-”l’d

+ 22
-J

peak Vmax = ~. The comparison indicates

the pendulous mass on the system is
simply founded on a displacement of the natural frequency
from We tovi’ard @ei.

170r the practical important case of q = p, called the
resonant tuning of the pendulous mass, mel = O and V=o.
In other words, the mass of the system no longer executes
deflections at all within the entire rotative speed range.

,The deflections of the pendulous mass in this instance
(cf. appendix 3) are

~— .————-.

?) -sP= -—---
2m. @

..—

(6)

or in other words, the mass force of the pendulous mass
mob (02 holds the excitation P in equilibrium and cance16
it to a certain extent.

This case is reminiscent of the known phenomenon of
the double pendulum and of the elastically joined dynamic
vibration absorber tuned to resonance with which the de-
flections of the system can be -re&J.ced to zero for a spec-
ified frequency. But , while this additional mass is in
resonance at one certain rotative speed only, the above
tuned pendulous mass is in resoi~ance at every speed of ro-
tation, because its natural frequency is-proportional to
the rotative speed. The pendulous mass therefore adapts
itself to the particular type of excitation of a po’.ver
plant, at which the frequency of excit’.tion itself is pro-
portional to the rotative s-peed.

For other cases of tunins, figure 6 silows the displace-
ment of the natural frequency according to equation (4),
and figure 7 several selected resoaance curves. The
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relative deflections b/a -can be read off f“rom figure 12.
,.

The resonance curvee Were plotted for ~~’= 1 and 1z’= -—9
m 5 15

that is, where the pendulous.mass is the fifth part Of the
mass of th,e system and the damping force amounts to 6.5
percent of the spring force, giving a resonance am-plifica-
tion of V = 15.’ These figure6 are approximately correct
for the conditions in a radial engine. I?or tuning ~ < 1... .

“~>1the- natural frequency diminishes, for it increases.

In the range’ p/,q = 1 to 1.1 or gen’e~ally for any ~-.-—-+.

within rangd of P/q = 1 to P/q = J
l+:Q. no resonance

occurs (see the curves for p/q = 1, 1.05, mand 1.o95 in
fig”: 7), although the system executes small deflections
inferior to those of the static deflection. Mathematical-
ly, this case can be represented by visualizing thez normal
resonance curve continued into the zone for (@/we) -= o
in which it progressively drops from V = 1 for w/we = o

tov=o for (&!/@e)2 = -m. This zofie ham-oens here to--
lie in the normal rotative speed range.

At only one harmonic excitation of a specific order
acting on the mass does the case of res~nant tuning iil a
one-mass system at mhi~h the deflections are zero, become
of importance. ,(OL the m-tiltimas~ system still other tun-
ings are of interest, as will be shown elsewhere.) But,
if several harmonic forces of different “orders are active
simultaneously, or in other words, if some periodic force
acts exciting on t’ne system, two different tunings of the
pendulous-mass are concurrently in existences since the
pendulous mass can be tuned to only one order of resor.ante.
In two-stroke cycle engines, for instance, all whole num=,
bered, in four-stroke cycle engines all half numbered ‘
orders of excitations are possible in additio-n. Concern-
ing the behavior of the pendulous mass in such an event
and the resultant vibrations of the system, a glance at
figure 4 shows that the system for a given rotative speed
does not differ in the least from a common two-mass system,
and the deflections caused by the individual harmonic ex-
citations are undisturbedly superir~lposed. Since the indi-
vidual orders correspond to different pendulum mass tuning,
every order has a different natural frequency: the system
has a different natural vibration frequency for every or-
der of tuning. Tb.c procedure consis@ in dcfinin~ the res-
onance for the particular order and the subsequent super-
position of the individual curves.
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A“resonanoe curve of a system involving several crit-
ical resonance points will undergo a“ displacement of such
poi”nts because of the pendulous mass, where by appropriate
tuning,one can be completely eliminated. The amou~t of
displacement iS largely dependent upon the value molm~
the displacement being so much greater as the pendulous
mass is greater i.n comparison with the mass of the system.
Figure 8 is a schematic view of the resonance curve of a
one-mass system embodying three critical speeds of rota-
tibn, that is, with and without a pendulous mass tuned to
the second order, which approximately corresponds to the
conditions arising in a s~ngl%cylinder two-stroke cycle
compression-ignition engine; me/m is again assumed equal
to 1/5. The critical of the second order disappears, that
of the third shifts slightly upward, that of the first
downward.

IV. ARBITRARY VIBRATIO17 SSSTEM WITH

ARBITRARY PENDULUiti MASSES

Visualize a pendulum mass of the type of fi~ure 2
fitted at some point O, consisting of any chosen number
of masses and forming part ‘of some torsioilal vibration
system, as in figure 9. This pendulum mass, at point O,
is to participate on the rotary motion o.f the system-of
angular speed Q.

-.

In conformity with the foregoing arguments, the oen-
dulum mass can be replaced, according to fi~ure 4, by a
mass with the stiffness c~9~ flexibly coupled to the sys-
tem so as to form the substitute -~endulum m~ss of fi~ure
10, consisting of tvvo masses ml ‘a-rid ma , the former
rigidly connected withathe systems the latter coupled
across the spring co~~ . Subsequently} it will be shown
that any.lcind of pendulum mass (till now,only a mathemat-
ical pendulum has been considered) can be re~resentad by
this tvro-sass substitute.

The natural frequency of the mass ma relative LO
the hypothetical static mass ml is
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hence the resonance:

.

Then assume that mass ml _exbcutes a positive vibrator~
motion al Sin Wt of. amplitude al and frequency m.
Which is the motion and which “the reaction of the pendulum

‘mass on ml and hence on the system?

Since no damping acts at ma it swings in the saxne
phase as ml otherwise no force equilibrium would be po$-
sible. The s:ame ~as the case illustrated in figure 5.
The simple force dia~ram for the present case is shown in
figure 11.

The equilibrium condition for m= giveS

Co (22(a2- al) = mzaz w2

I J

and for the relative deflection b = aa - al

l!Q2zEkd
L H’.-CPl

For the resonance tuning q=p, there is obtained

a2 = -b= m if .al & O

The reaction on the system then cor,sists of a force
W Sin wt which follows from the diagram at.

w
2

= ml.al~ + CO Q2(a2 - al) , .

2
=““mlalw -t-mzaabz- ‘“

t —-— .

“( ma

)1

2.
W=ml+ ---------- al M -= M alw2

1- (P/q)2 .

(8)

(9)

(lo)

,.
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This force can be regarded as mass force’ caused by a
mas S M at point O of the amount of

With this substitute mass affixed

=M1+M2 (11)

to the system, the total
effect of the pendulum mass on the system is defined for
a given mode of excitation. Here also the pendulum mass
merely affects the natural vibration, that is, as regards
frequency and mode of vibration. The substitute mass con-
SiStS of a constant portion Ml = ml and a portion

ma
Ma = .---—. -—- varying with the tuning of the pendulum

1- (P/q)2
mass.

It is
M2=a2 ~_+l-— -- =
ma al al

ti2
Figure 12 shows ~: plotted against p/q, concurrently

a b“
with –~ and ;; in function of p/q.

al

For tuning near p/q = 1 the su’ostitute mass M2
and hence the reaction of the ~endulum mass on the system
is very sensitive to small variations in tuning.* Any
strong effect on the system by small pendulum mass is on
the whole confined to the range of p/q = 0.9 to p/q = 1.1,
that is, the practical range mostly.

The mass Ma can assume a-ny value between += and -~
with exception of the small range of ‘ha = O to Ma = m2.

For q = p,IK=m. That is, this tuning acts for the
related order exactly as an infinitely large flywheel
(dynamic flywheel}, attached at point O. The deflections
at the particular point thus become zero, and a node results.
But the deflections of the rest of the system are not re-
moved by it. The reaction of the pendulum mass in this
case consists of the force
—.---—- ——--——--— -——-- -—.————- .-——--.—- -------- -—
*The effect of certain llcorrections~l to resonant tuning,

established by experiment with which Salomon obtained for
certain cases IIthe best resultslt by trial,is probably also
traceable to it.
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.-,...

{

For the mathematical prediction of the natural frequen-
cies, by Gfimbel!s method, for instance, the liegative substi-
tute mass enters the calculation as negative quantity, which
in nowise affects the calculation process and .afford.sa
clear representation.

The relations are predicated on a frictionless motion
of the pendulum mass. By a small damping of the pendulum
mass motion, the substitute mass in resonance will probably
reach a very high value, but not as great as coc Assuming
the damping force of the pendulum mass at k. ~n h, th?t is,
p.roportio.n~l to the deflection and to the bearing lend due
to-.”centrifugal force, the substitute mass Ma becom~s, (aS
shown in appcn-dix 4):. .

-,
A deflection b! will result such that the reaction exact-
ly reaches the value necessary for maintaining the vi.bra-
~-ion”node. From it the relative deflection c.aa be calcu-
lated. In a one-mass system the reaction is equal to the
excitation W = P acting ,orithe mass.
. .

For p/q > 1,’ M~” becomes negative! The reaction
then corresponds in -its -phase to a spring force acting
contrary .to the mass force, that is, to a substitute spring
in a certain degree. But the amount of the reaction grows
like a mass force with the square of the frequency. The
pendulum mass here swings opposite to the mass of the sys-
tem. Through this tuning, which results in a negative sub-
stitute mass, the natural frequency of the system can bc
raiscd~ a possibility of extreme innortancc in practice.
While the lowering of the ,natural f’requcncy of a system is
usually accomnlishcd ‘very easily by emp loy in:, additional
tiasses, the opposite cas-e,,the raising of the natural fre-
quency is often beset with difficulties because a reduction
in the available masses ,or a. stiffening of the sheft system
is not alway< possible. Here the pendulum mass with this
tuning equivalent to a substitute spring constitutes a very
practical means, The e,ffect is, of course, for the present,
restricted t’oa given mode.

..

ma
M2 = ..._— -—.. -.- ——— —.-

/ [1-”:: “+ ,.2 ‘!l”)

—--.- .- . . ..—.-
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if Z. = % is the proportionate damping. The change in

‘?sign is ef ected through the phase change. At resonant

t“uning, Ma = ~~. With a 0.1 percent damping, which may

be assumed for a rolling resistance -in order of magnitude,
the substitute mass would in this instance become 1000
times as great as the actual mass. In its reaction on the
system, this mass should differ very little from an m size
mass (fig. 13). Since only rolling friction iS involved
in practical pendulum masses and the roller tracks them-
selves are hardened for this purpose, the damping is very
small. It is therefore disregarded and the subsequent
study continued on the. basis of frictionless motion.
Since the choice of tuning makes it possible to accord
almost any positive or negative value to the substitute
mass, the natural frequencies for a given mode can be ma-
nipulated within very wide limits. The natural frequency
of a multimass system approximating a six-cylinder engine
with flywheel for different values of substitute mass M
is shown in figure 13. The fundamental frequency without
substitute mass, put at we = 1, can be varied through M
within the limits of about ~e = 0.23 and 2.06, that is,
across the vide range of about 1:9. The natural frequency
approaches the linits asymptotically and on exceeding them,
changes to the natural frequencies of a different degree,
that %s, with more or less nodes. In the transitional
points a node is formed in the place of the pendulum mass.
The higher natural frequencies are, of course, simultane-
ously affected by the mass M.

Summing upq it is found that with the pendulum mass
for a given mode it is possible,to

1. Apply, to a certain degree, an infinitely great
mass at a point which reduces the deflections
to zero,

2. Reduce an existing great mass to zero,

3. Provide any large positive or negative masses.

In this way, critical resonance zones can be considerably
displaced if it is deemed desirable and shifted outside of
the operating range under certain certain conditions. But
the change in natural frequency likewise changes the mode
of the natural frequency, hence also affects the excita-
tion and damping of the system. SO, for instance, it is
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“, -

possible to manipulate the vibration mode of a power plant
in such a way that certain vibrations in cylinders cance~

.,each other and no vibration from this source develops. By
changing the mode of vibration of the power plant tif a
shi~ the proportionate deflections of the propeller can be
increased and so the great damping of the propeller can be
utilized to better advantage. Or an elastic coupling
could be utilized more for damning by increasing its pro-
portionate relative deflection. By fitting an co size
dynamic flywheel to a multi cylinder engine, th~ transfer
of vibrations from the engine on the driven side ($uch as
generator, propeller) can be eliminated for a given mode.
This applies in particular also to the case There a node
already exists without flywheel and the pendulum mass can-
not influence the natural frequency at all. It is a known
fact that on a large flywheel located in the node of a vi-
bration, the resonance deflections on either side of the
flywheel differ considerably from the natural vibration
mode.

In the event that several ha”rmonic excitations of
different modes act on the system simultaneously, or a
periodic force is involved, every mode must be analyzed
by itself. The tuning and the su”ostitutc mass of the pen-
dulum mass is defined for each mode and with this. the nat-
ural vibration of the system computed.

If the systeu is provided with several pendulum
masses which may be disposed at one or various points and
with different tuning, each pendulum mass for a given mode
can be replaced by its substitute mass. A mutual disturb-
ance of the pendulum masses in their behavior is ilot nossi-
ble. With these different substitute masses the natural
vibrations are computed for one mode and then re~e~ted for
others. Ordir~arily the number of dangerous modes is few.

The application of several pendulum masses makes it
possible to manipulate several resonances as to po$ition
and iiltensity a-ridso to eliminate under certain conditions
all critical zones within the operating range. No general
rules can be given; each vibration system must be treated
according to its own particular nature.

,,

1 ———.-—._—
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V. FUNDAMEN~~L I?ORMS OF ROTATING--PENDULUM “MASSE’S

. . .

So far, “a point-pendulum mass, a mathematical pendu-
lum , had been assumed. In the following various practi-
cal design versions of pendulum masees are analyzed with
regard to their

1. Tuning

2. Reaction to the system or substitute system, and

3. Relative deflections

The knowledge of the relative deflections is neces-
sary for the choice of size of the pendulum mass, for the
disposition of stops and for an estimate of the extent to
which the theoretical study retains its validity for the
actual deflections.

.
Subsequent to having established their tuning q all

pendulum masses are reduced to the substitute system of
figure 10, the equations of which are used for the study—
and which read as follows:

the reaction

7 ‘hereby

the substitute mass M = ml + ‘a

1 - (p/q)a

the relative deflections

for the resonant tuning

a= o
1

and the reaction in this

q=p there is o%tained

M=OY

case

L2x_l
1. Mathematical Pendulum

Supposing the pendulum illustrated in figures

z (lo)

= (11)

E (9)

= (12)

2 and
3 has the mass m. and is attached to a massless disk
(0 =m= 0).
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From the equality of-yhe resto~ing force and the””mass
force the tuning follow.s-~t

.
..

. .

z (1)

The substitute mass at le~.er arm R = r ~ s

according to ecl,uation (11), wheceby ml = O and
a“t

~ ~u
—— ..—___..__

—- .--...___

1- (p/o)2
L_—.-—_ —- .—--l

The angular deflection ~ of the tend.vlurn mass about its
point of sus’pen’~ion 01 at a deflection rol
tern about O “follows from

of the sys-

follows
m = mo)a.

(13)

~= 1
VI (Q/p)2 - 1

r+s
—= $(a.~ + 1) becomes

s

2+1.
~ := (q;p)’--1

. . 1—.—. (14)

I?or the resonant tuning = P, o~ %ecomes and cfor the present, indeterminate.’ Under a forc~ W
actingon the system (disk) in O at lever arm R, c assumesa value c’ , secured from equation (12)
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“w’ ““ ‘“)
The formula indicates that co! Is so much smaller by

equal force W as the speed of rotation is greater.

2. Design Version Wright (fig. 14)

This pendulous counterweight used by the Wright company
in its radial engine is roller supported at two pivot points
by two pins, If the disk is held stationary the mass can
execute only a pure displacement motion, each point describ-
ing a circle of radius s = dl — da, where dl is the hole
diameter, d2 the pin diameter. The pendulum mass can, in
this case, be replaced by a mass point in S, which is pen–
dulously linked in O! and dynamically corresponds to the
previously investigated mathematical pendulum. Its tuning
is therefore also

l_c_u = (1)

If the disk itself performs a rotary motion, the pendulum
mass executes likewise a rotary motion of the same amount
when point S is held stationary. Its moment of inertia
about S must therefore be added to the system. Hence
with In. as the mass and mo 12 as the inertia moment of
the pendulum mass about its point s(i– arm of inertia),
the substitute mass is

M= Ml + Ma

(16)

referred to the lever arm R = r + s. The mass of the
pin can be disregarded.

The values for the relative deflections are the same
as for the mathematical pendulum

= (14)

and the resonant tuning q=P
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as before.
1,

The wright design has the great advantage of involv-
i ing rolling friction only, The reactive forces in the
/
,. bearings always pass perpendicularly through the oontact

point of the bearing surfaces so that no slldlng can occur
even at large vibratory deflections c. A further advan–

i
f

tage is that the tuning can he made as high as considered
desirable since s can be made arbitrarily small (in con-
trast to the material pendulum).

3. Material Pendulum ,

Let the pendulum, illustrated in figure 15, have the
mass ‘o and a moment of inertia m. 12 abcut its point S.
A body, by its linear motion, can be represented dynamically
by two mass points having the same point S, the same total
mass, and the same moment of inertia. ?.he pendulum is ac-
cordingly replaced by two mass points ml and ma of which
ml is located in the pivot point 01.

When St is the distance of mass me from 0!, the
conditions

ml s = m2

ml + mz = m.

~ 2
mls. + ma(s? - s) = m.

afford

s.! = s [1 + (i/s)a]

(s1 - s)

2
i

I 1

m2 . mo

1 + (i/s)2

(17)

St corresponds, moreover to
of a material pendulum.

the reduced pendulum length

Herewith the pendulum mass is reduced to a mathemat-
ical pendulum m2 the length of which is s! and to an
additional mass ml rigidly connected with the system.
The tuning is

.-,.. ., , .,, , ,,,,..,-..-,..,.—, -.—..,,... . . .- . . . ....— —
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(18)d= z.= “

‘s’‘(’r+
and the substitute tiass on lever arm R = r + sl = r + s + U

s

(19)

ml and ma ‘to’ be:conputed according, to’ (17)-. It is to
be noted that the reduction involves Ieve-r era. R = r + S$
rather than R = r + s. The relativ~-- def”l-ecti-.oxsc are,
as on the mathematical pendulum: -,-.

-’ ‘x’ “-“;‘(14)
forq=p C!= 1$ (qz + 1)~

ma R @

For the practical application the material pendulum
has the disadvantage of attendant sliding motion in the
bearing and the impossibility of tuning the pendulum to
high frequencies since St cannot be constructed below
a given value. It always is

4; Roller According to Salomon

a). Outside roller. This pendulum mass (fig. 16) is.—-—.—--———-————
formed by a ring which unrolls on a fixed pin, distance r
from the axis of rotation. The outside roller is there-
fore not pivotally mounted in a poiilt Of but rolier sup-
ported on a pin. The pin has 2 radius pl, the inside
roller track of the ring the radius p~, a mass m. and
an inertia moment m. iz (fig. 1’7). The pendulum mass is
again replaced by two mass points, of which ml is placed
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.in the point X, the contact point between pin and ring
in equilibrium pos>tion of the ring; X forms the momen-.=
tary center of the motion for small deflections, but the
center of the path of the centroid is 01. It is

ml = m ma . m.
(21)

1 + (pa/i)2 s ~ 1 ‘+-(i/p2)2

and the distance ma from S

iz
u=—

P2

The mass ml must here also be added to the mass of the
system as it joins in its motion. But now mass ma can
no longer be regarded as self-contained mathematical pen-
dulum subjected to the centrifugal force since ml does
not form the point of suspension for ma . At deflections
of the pendulum mass, the point of support shifts toward
contact point Y so that the centrifugal force of mass ml
then contributes also to the restoring forces of mass ma.

When the system executes no vibratory motio4 (ml = O)
the pendulum mass is subjected to the effect of three
forces: the centrifugal force in the center of mass S,
the mass force of the vibratory motion in mz, and the
bearing reaction due to Y, which must be in equilibrium
with each other. The bearing reaction must accordingly
pass through the point of intersection Z of mass force
and centrifugal force.- -

. .

The equilibrium in point Z demands
~

l?’Y=<m2b ‘eo

~1

/

L
which corresponds to the equation: restoring force = mass

.,,f
“’l

force.
‘:
,!
1., The quantities Y and b
l\

can be secured from geomet-
rical relations, after which the insertion of all the

L
~p

values .(cf. appendix 5) affords

j
.

W2 =
r

Qz
eo

s[1 + (i/p2)21
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and consequently
1 . .. 1

.lIxi@2J.. ’22)
The substitute mass at lever arm R= r+ s + u=

.2

r+s+~i s-.: ‘-’ ,, ,.
.- P2 ,,’ - .

,

~-—~
ml and m2- %eing’”obta~ne’d from equatio~- (-21;).

The rel’ative deflections for m2- are again

: The relation between“, ~ and c affords (cf. appen-
dix 5)

,. ,..-

>.

with

hence

-at resorlance

therefore

—

C=g rq24J

i2
R=r+s+—

P2

c R/r qz
— =—.L- —
ml

(q/P)2 - 1
(24)

q=P

C’=wa
m2ri2 I

According to figure 17, the bearing reaction in

= (20)

is not
perpendicular to the contact area but inclined at ,an angle

a to the normal. At large deflections, therefore, a
.. sliding can occur which must be avoided here under all

I I-—,,.——,,-—-—... .-.,.,,..—,,.,.—— ,,----—-.—.,,.-...,,.,,,--,, .-,---,,,
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..

circumstances. At the high bearing pressures and rapid
oscillations, such sliding at this point cannot be con-
trolled by lubricating technique.

Angle q, which must always be smaller than the an-
gle of friction and which is composed of the angle ~2
plotted in figure 17 and a-n angle til conditioned by the
vibratory motion of. ml , follows from geometrical rela-
tions (cf. appendix 6) at

(25)

wherein either ml or c could be posted according to
equation (24).

At resonance q.p for Ql = O

Lti=~ 1 1 (26)~! r + s 1 + (p2/i)a
-. .—..-— —.—--.— .-—-

b) Inside roller - For the inside roller of figure 18—.———————.—————— :
where oi~e roller can swing within a hole, the geometrical
proportions are represented in figure 19. Tk.e notation is
the same as in figure 17. The derivation is the same as
for the outside roller. However, the relations for the
inside roller are obtained from those for the outside roll-
er by simply posting PI and pa negative in conformity
with the geometrical inversion.

Tuning and relative deflections remain unaltered.
~

The substitute mass at lever arm R= r+ s - ~– is

[( ‘J
pa

M=ma
r + pl\2 + “- ma-- -,

)
—————— —.——___.—

R 1- (P/q)=.——

‘(r+pl)ql-r~ ;~=p ——_-—___ -———_— _____
(r + s)(l. +’p2a/i2)

1 1.

T’/c’ remains unchanged.

(27)

(28)

1.

The cited equations (22) and (20) for the tuning and
the deflection 61 at resonance are i~ agreement with
those obtained by Salomon by a different method.
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5. Pendulum Mass with Two Degrees of Freedom

All the pendulum masses discussed so far had, in
comparison with the system, only one degree of freedom,
if the possibility of lifting from the support, prevented
by the centrifugal forces, is discounted. Figure 20
shows a pendulum mass with two degrees of freedom. It
comprises a pendulum mass of the Wright type with one of
the supports omitted, or of Salomon!s outside roller with
the support pin itself mounted on rollers.

Since the pendulum mass has two degrees of freedom,
it is to be expected that it will also have two different
natural frequencies and two different tunings. In con-
sequence it should be possible with such a pendulum mass
to manipulate two different modes simultaneously.

Figures 20 and 21 show the mass at the instant of
maxinum deflection. The mass nay be visualized as having
been put in this positio~ by giving it, first, a displace-
ment (similar to Wright) , at which point S makes an an-
gular deflection c about o! (0!, o~l and S then still
lie on a straight line); then the mass is slightly rolled
on the stationary pin, the S point making an angular de-
flection 8 about 011 (~ does not correspond to the an-
gle of rotation). The position of the nass is defined by
‘s and 8. The conversion in the position 6, 8, on the
other hand, however, corresponds to a temporarily inde-
terminate point X on the axis 001, with distance of,
say, xs = v. Then the pendulum mass is again replaced
by two mass points ml and ma, the first, ml being lo-
cated in X. The pin pa is assr..qedto be massless.

Now there are three forces acting on the pendulum
mass, the centrifugal force in S, the mass force in m2 ~
and the bearing reaction which passes through the contact
points yy 1 of the pin, since the pin is masslcss, Equi-
librium is possiblb only when the b~r.ring reaction passcs
through the intersection Z of the two other forces.
This condition leads, by reason of the geonatricr,l rela-
tions (appendix 7), to the unshortened equp.tion

which can be satisfied for any given values of i, p, r,
(and s only when either

.—— —-—.—-——-- ...—-..—.-. . -—----- . ------------ ------- .. .... - .. .. ....-..—..----—-— . . ------ - .-.---——.-
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,.-
‘1 6=0” ‘theriI V=m, u=o

or II 6 =’-2; or II V=o, u=m

This means “that the mass executes either a displace–
ment motion (v =CD) or a rotary motion about S. These
are the two possible states of vibration of the mass,
They are illustrated in f~gure 22.

In the first instance the mass moves exactly like
Wrightls pendulum mass and all of Wright~s formulas for q,
M, c, and so fnrth, hold true, including, in particular,

=(1)

In the second case the tuning follows from the moment
equilibrium about S, restoring force = mass force,

F PI ~ = m. ia aw2

or
. S2

mo(r + s)C7”p c =m o i26—w
PI

, —-

L.——-—————.——~

For the substitute mass at distance R =
obtained

ml = m. in S

(29)

ri-s there is

and m2 = O in CO; whereas the moment of inertia
is therefore 1

L-

m. (i/R)2 7
MI1 = m. +

J

————————.—.
l– (P/Q2

with = EL
P1

equation (9) gives the relative deflections at

~-=,,,;+

—

——————

)
&l and8=-2c
-1

2
m. f

(30)

(31)
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6111 for the-r ~sanant tuning can here also be derived
from equation (12), but it is simpler obtained from figure
22, where the reaction consists of the moment

. . mo(r + S)Q2 pl C! = W (r + s)

whence .
I 1

lsz2-- (32)

From the geometrical pattern it is seen that

r‘ll=–C I
~~

For the case of

there is obtained
ql = ql~

The pendulum mass with two degrees of freedom, which
like the Wright version and Salomonfs roller possesses
only rolling friction can be tuned simultaneously to two
different modes or orders.

Figure 23 is a design sketch for the simultaneous
disposition of four such pendulum masses. This device
flanged to the shaft can be tuned to four different modes
simultaneously if the vendulum masses facing each other
are designed in pairs as in the sketch; if the opposite
masses are designed dissimilar, theoretically, a device
with eight different modes of tuning simultaneously is
possible. The springs serve to keep the masses in their
position when at rest. Because of their smallness their
restoring force is secondary, The term damper is purpose–
ly avoided for such a device which in a way operates as
frequency transformer.

Eventually, existing counterweights could likewise
be designed with advantage as pendulum masses.

6. Compilation of Formulas and General Remarks.

The table in the appendix contains all the data of
interest for the aforementioned types of pendulum masses.
Other possible types are not discussed here. They can
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be analyzed in the same, manner by substituting two mass
. points, one of which is placed in the fictitious point of

rotation of the vibratory motion. If the tuning at ‘a ,pen-
dulum mass is to be ascertained only, this can usually ~e
obtained in simpler manner. In such a case only the cen-
,ter of gravity of the body is considered, and the actual
centrifugal force is allowed to act on a fictitious mass
having the same kinetic energy as ‘the pendulum body. On

roilers, for instance, this mass is
‘“(1 +$) ‘he-r: ‘

“is the distance of th’e center of mass fr”om the point of.
support. ,.

One instance of pendulum mass of the Salomon type
concerns the ,case where the center of mask does not coi,n-
cide with the center of its path of rolling. In this :in-
stance the tuning is

Ezilizti’”;-’:’=--’33)
whereby 1 = s + p“l.

F-or 1.= p2 or p’2_pl=s the formula changes to
““the equation (22) ‘for the c-oncentric roller. With PI = O

or P2 “ s the formula (18) for the material pendulum ‘is
obtained.

“The design of a pendulum mass’ is above all predicated
on the knowledge of the “relative deflections t to be
expected ‘and the angle of inclination ~, ‘ The magnitu-de
of the, pendulum mass is governed by it. “The greater the
permitted deflections the smaller the pendulum mass itself
can he chosen, For large deflections c the mathematical
assumptions are no longer fulfilled so that the pendulum
mass has , under certain conditions , a tuning other than’
intended. Salomon quotes t = 15° as upper Iimft valuev
Experience must “decfde it. Tor a nine–cylinder radial
engine this deflection on a pendulum mas-s of t-he Wright
type would only amount to about 6° with me/m = 1/5, and

that is for the wor”st”case thet tlie ma$n critical lieg
at full throttle s~eed of rotation.

The angle of inclination Q that arises on certain
pendulum masses must always be smaller than the angle of
friction in order to positively avoid sliding, In the

extreme case, 0.1 equivalent to an angle of 6° might %e
permitted.
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The” ro~at i,n~gpendulum mass sub ject”e’d‘tQ ::c-.ent”rifug~1

force corresponds in its effect to a mass e~astic.ally
combined with the systeri, whereby the” spring stiffness is
dependent on the rotative speed.

‘l’heresonant vibrations of a one~”mass s:ystem ~x-cited
by a periodic force of. given mode can %e co,mplt?tely re–
moved by a pendulum mass tuned exactly tb reso’na”nce. If
the pendulum mass is not tuned to resonance the na-tural
frequency of the -system of the particular mode can be ma–
nipulated and shifted within any limits upwar”d or down–
ward. If several modes of the exciting force exist simul–
taneously the system attains through the pendulum mass a
different natural frequency for each mode.’ The individual
resonance curv,es -of the different modes are superimposed
undisturbedly. “ - - -

For the general case of an arbitrary multiumss system,
the reaction of any arbitrarily tuned pen(ll~luin mass dis–
posed at some point for a gi~~en modq of -excitation can be
best described by a substitute mass rigidly connected to
the ~y-stem at’’the particular point.. By.,appropr.iate tuning
of the pendulum mass this substitute mass’ can.be a,ccorded
~“ti.y-artiitrarily great v“a.lueof any prefix. . In this manner
the natural frequency of the system for the particular or-
der .c,anhe shifted within wide limits.

-, :..
An i-gfinitely great “substitute mass C-qr-t.be provided

and..a-node im.p”osed”at the particular point of. the .oscilla—
.t.i..on-i. An alrea.dg””existing mass can be cancel.led in. its

..effe.ct-. In particular, it is possible to raise the natural
frequency ‘of the system by an equivalent .substitut”e mass
‘of ,negative sign tihich acts as a spring. This possibility
.-ofr.a”i.singthe natural frequency is of particular value
be~au~e no other means to accomplish it are known. Wfth
the natural freqtieney, the vibratidn mode is also affected
by the substitute mass and hence the excitation and damp–
ing of the system. .. .

. . ..
In the event tha,t several excitations .of different

modes exist, the substitute mass for each mode gets a dif–
ferent value; hence the system a different natural fre-
guency fore a,ch mode. The individual vibrations are u.n-
disturbe”dly superimposed. . .. “

. . . . .
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With multi-pendulum masses.“ each mass becomes fully
effective without possible mutual interference. Each
pendulum mass is replaceable by its substitute mass.

Mass ;kg cm.-—-
L

m.

‘o 12

. .
.NO!CA!CION

mom6nt of inertia of the mass of the system,
and the mass reduced’ to lever arm R,
respectively

mass of pendulum

moment of inertia of pendulum about its
center of gravity

dynamically equivalent substitute mass points
of the pendulum

dynamically equivalent substitute mass of
the pendulum at lever arm R

Qring constants - 1dam~in~ constants ~kg cm and ~~ .——— ——.— ________ ____ ___ ,
L cm ,

C,c=s% spring constant of one—mass System for the
R torsional vibration and for the longitu-

dinal vibration at lever arm R, respectively

k damping constant of the damping force of the
one—mass system .propo’rtlofialto the deflection

co& . spring constant of the substitute system of the
pendulum mass ,.

Deflections [cm]——_- ——————A

~,a = @ vibratory deflection of the mass of the system

P=..
. .

~o #ao = cpoR deflection of the point–pendulum mass

ti,b= $R relative deflection of point-pendulum mass
with respect to the system
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FVl!al = v~~ ..
. .. ..

i “)
., deflections of. substitu.te masses ml.

Va,aa = @2R
and D2

c relatlve deflection of center of mass of ~en-
dulum about its path center (suspension
point on simple pendulum)

n angle of inclination of support force with
respect to the normal of the contact surface

=P
ast ; static deflection of the system due to force P

at lever arm R

a!,bt,~t,ct,mt denote the corresponding values for the spe-
cific case of resonant tuning q = p

Na&u12aL_&zeQuQQC~Qs [1/s] ~ ‘ “

lu

We

1’

W sin wt

rate of rotation, angular vslocity of rotatory
motion

frequency of the exciting force P

natural frequency of the system without pendu-
lum mass

,,
.

natural frequenc~~ of the pendulum mass relative
to the hypothetical static system “

,-

exciting force at lever arm R’

phase of the exciting force relative to the
vibration of the system

centrifugal force in the center of gravity of
the pendulum mass ,,

rea,ction of the ~JendUIU~ mass o-n the system
at lever arm R

Design d~mensions [cm]____ __— ———— —

r = ()()! distance of the axis of
point cf susperisfon,
of the pendulum mass

-“

r’it~tion from the
or path center S
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s S.OIS

PI

P2

Ratios.—— —— _

z .k
c

We o
~ = ‘––

0

P=:
c

v = –~–
ast

distance of the cente_r of gravity, respectively,
of the suspension Point or- S—path center of
the pendulum mass (= length of pendulum of
the mathematical pendulum)

radius of roller path of the disk combined
with the system

radius of roller path of the pendulum mass

damping of the one-mass system, ratio of da,mp–
ing force to spring force; the logarithmic
decrement is then + = n z

tuning of pendulum mass, the ratio of its nat–
ural frequency to the rotative speed

mode of excitation, ratio of exciter frequency
to speed of rotatiofi

magnification of the deflections of the system

Note: The bracketed dimensions refer, respectively,————
to the quantities of the torsional vibrztion and the cor–
responding quantities of the longitudinal vibration at
lever arm, R.

1.
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APPENDIX 1

The force acting on 140 in direction of the vibra-
tion (tangential), (fig. 3) is

F (~-~)=F~~ ●

At Ot the force Fcos (c-~) ‘F has a tangential
component F c, which yields on m a force

Fcr ——-.— = F~O
r+s s

Hence the two forces at m. and m act like a

stretched between the two masses.

AF’PE5D1X 2

‘o a. w2=co32b
2

ca = P cos B+ coo b + ma W2

ka = P sin ~

From the first equation

b b ‘o (L12 E2
—- = —-—.— = ———— ~=
a. a+b co 2 ~

;

Q = _._.___l____ .‘ “
a (q/P)’ - 1

entered in the second equation

.2

1
co 3

P cos ~ = c a 1 – Q–@ – _————————————
1c c [’(q/P)2 – lIJ

spring

~
with c =mwe 22 2

and co = m. weo
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1——._—.———-
(dl?)2 - 11

This equation and%he third squared and added affords

p2 = c2 a2[––––-]2 + k2 aa

whence P/c
a= -——.—— -——_____

f
(

~:--:y--~~-~~

which with the notation gives the previously cited equa-
tion for T.

For the case without damping, z = O, there is obtained

-!

v= J.
—————————————————— --—— -—-- ———

2

()(

l-~– l+=
1

)

————————-—-

we ml - (p/q)’

Taylor ~s equation reduced to the same notation and the
one—mass system read on the cofitrary

V* = 1——————————.————————-——————.———.———————
2

()(

l–~- 1 + b ––––––—
1

)

—-———————- —-
U.)e m [1 - (p/q)21 (qa+ 1)

hence differs by the factor (q2 + 1), which is due to the
erroneous premise. \

APPENDIX 3

1’or 2.1 b
gives – = ~

q a

b= ~ V gives with———

ast a
P/q = 1
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1>

or with

b 1——— ——____ _-
‘St ‘T~_ 2:2

()ule m

‘St = P/c 2and c
‘e = z

%=-p -————

‘o u)’

The force diagram of figure 11 changes in this instance
into thzt ~f figure 24, where the mass force in m2 is
vectorially divided along al and b. The equilibrillm
gives

m2 al w 2 Cos 13= co jq2b - m2 b U12

mz al w 2 sin 1?= k. ~2b

squared and added

The reaction of m2 is W = co ~zb or

w’
w = __z2_____–––—————.————————-——

f( 2\2
1–22-/ + 2.2

q ’21

which,strictly speaking, may no longer be regarded as mass
>–> force since it does not fall in the direction of al.

For small damping velues Z. the directional departure is,
however , small with exception of q/p = 1.

The damping force put at k. (22b is rather iniley$nd—
ent of the deflection by purely rolling resistance.
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APPENDIX 5

Figure 17 affords

and Es= g(r+s)

with

becomes

.2

u=~-
P2

t c
Y=~–––— ——

() 2

‘1+4 ,

P2

further %= (p2 + u)u

and a P2 =(r+s)g

hence Ib ( ;:9’
=(r+s)l+

7, b as well as F and m2 posted in the equation

F Y = ma % weo2

and abbreviated gives equation (22).

It is $R = a (P2 + u)

a P2 =Cs

.P2R
whence c — ——-—- - $sp2+lJ

but
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. .
APPENDIX 6 -

Figure 17 affords

nz p2 =Yu

and appendix 5

cY = ~ ------- -
s

1 +’ -e
P22

with cs~= ————-
r+s

.,

-.

Y = –J–- 6———-—- ——--—

r + s 1 + (i/p2Y

hence n2 =
rc————————-—---——- —.—

(r + s)(1 + p22/i2)

The mass force ml(r - pl) V1 W2 together with the support
force F (small angles!) produces

d

or

ml (i –pl) CPl W2
nl = --——---—-—-——————

m. (r + S)Q2

(r -
nl =

pl) P2 V’1———————————— -—.—

(r + s)(1 + ~~~
,. i

gives ‘.e.quation (25) . - (Sign not of interest!)
... .

- ‘APPENDIX 7

.
tii>

. The mass of the pendulum is subjected to a displace—
ment of the S–point by S(6 + 6/2) and a rotation- through

L 2-, which must be equal to the angle a. Whence
2’P1
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~=s(c+8’~2)” c+tj~—----——- -—- =
P 1 —-”

a 6/2
and consequently

For angle Y between centrifugal force and bearing
force, the triangle 001 s –- whereby of s // YY’ –

aff orals C(r + s) = s (e-t 5/2)

hence Y = ---- (6 + 8/2)
r+s

In order that the point of intersection Z
distance u

lie at
from S,

it must UY= p~ 6/2

i2 6 ~2 r.- --— ——— -—-_— (6 + 8/2) = p, 6/2
pl 6-+.8/2 r + s

@
Therefrom follow the further conclusions of the main

text!
Trans]atlon byJ Vonler,.
NatlonolAdv(sory Commltiee
for Aeronautics. IiFiFEii31NCES

1. Taylor, ,E. S.: Eliminating Crankshaft Torsional Vibra-
tion in Radial Aircraft Engines. SAE Jourr , March
1936, vol. 38, no. 3, pp. 81-89.

2. Translation: “Torsional Vibration Transformer and Dy-
namical Flywheels’; , of the F. Faudi Co. , Kr onberg
atF-rankfurt , a/M, licensee of the Salomon patents.

3. z, tiDI, 1916, pp. 911, 845, 451, and 703.

4. Jahr3. der Schiffbautechn. Ges. , 1911, p. 283,’ .

5. Stieglitz, Albert: Drehschwingungen in Reihenmot oren,
Luftfahrtf orschung, Bd. 4, Lfg. 5, JUIY 24s 1929,
pp, 133-158.
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Fi~ure 4.- Substitute system for
figure 1.
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l’i~ure 1.- Vibration daqer
(Kutzbach type).
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Figure 6..- Natural frequency of one-mass system by different tuzzing

of pendulum mass.
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Figure 7.. Resonance curv’esof ono-mass system by different tuning

of pendulum mass.
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Figure” 2.- Single-link vibration
system with a pendulum Figure

mass.
3.- Reduc eci system.

I

Figure 5.-

.iZr’’m”Fi:2=:F”
a, al Figure 11. - Force diagram of

Figure 10. - Substitute system ~. the pendulum mass.

for the pendulum %/nZ –6
mass of Figure 9. 6- %,

al/at - ?
* –

- c?
2 --,

0 I I I o1 I
4* I I

4/ ~ I
12 P/ ~6_
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0 f!
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Figure 12. - Substitute mass
r

and deflections + -
-Y

by different tuning of -6
pendulum mass. -6-

-d
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\
‘e=15003

/ d LJ ~
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rpm
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Figs. 8,13,24

Figure 8.- Resonance curves
without pendulum

rpm

of a singlo cylinder power plant with and
mass.

3
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11 11 .,~
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M

Figure 13.- Natural frequency of a multi-mass system for different
values of substitutemass M.

al m>lw 2

m2bw 2
m2

Figure 24.- Diagram of the forces of the pendulum mass by small
natural damping.

m .
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1+~

u

.. .>=d,-u’2
I

f m!
....

.

Figure 14. - pendulum,
version.

Wright design

Figs. 14,15,16,17

Figure 15.- Material
pendulum.

Figure 17.- Geometrical Figure 16.- Salomonls outer roller.
condition’s on

Salomonls outer roller.

I ~— ..——. —.. .. .--..——..————-.
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Figure 18.- Salomonts inside roller.

I

Fig= . 18,19,20,21

Fi~re 19.- Geometrical
conditions on

~alomon’s inside roller.

Figure 21.- Geometrical conditions of
the pendulum mass with

two degrees of freedom.

II –-
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Figure 22. -

Case 1 Case n
The two possible natural vibrations of a
pendulum mass having two degrees of freedom.

Sec+ionA-A “

Figure 23.- Device with several pendulum masses of the type
of Figure 20.


